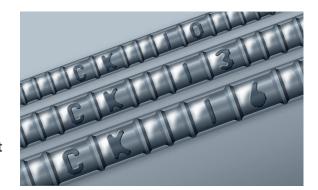


千代田鋼鉄五業株式会社 https://www.chiyoda-steel.co.jp/

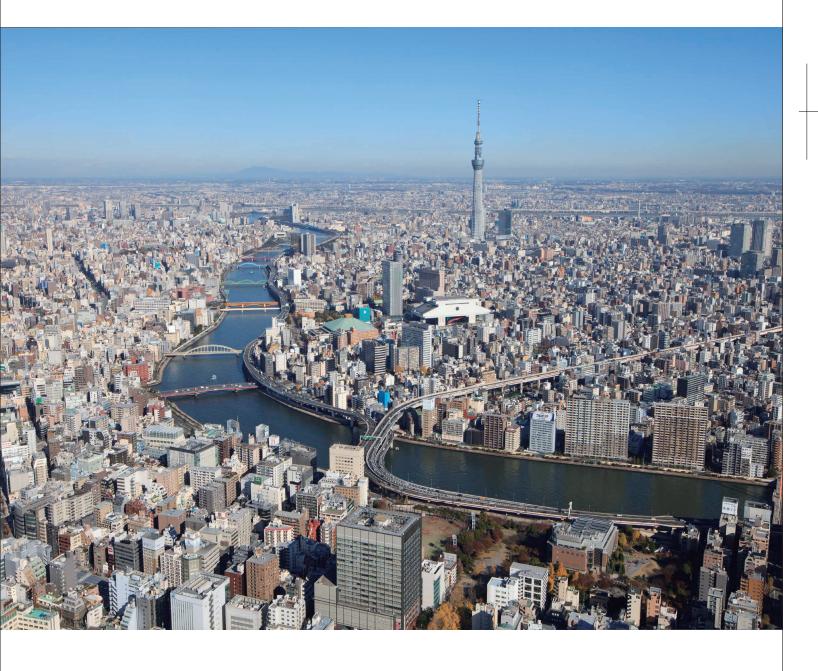
Headquarters Ayase Plant 6-10-6 Ayase, Adachi-ku, Tokyo 6-10-6 Ayase, Adachi-ku, Tokyo TEL:+81-3 (3605) 2121 (main) FAX:+81-3 (3628) 6620 (main)

Ichikawa Plant 1920 Kouya, Ichikawa-shi, Chiba TEL:+81-47 (327) 0121 (sales) TEL:+81-47 (327) 1571 (manufacturing) FAX:+81-47 (328) 4774

CHIYODA-STEEL

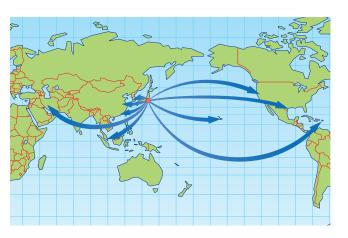

干代田鈿鉄五業株式会社 Chiyoda-Steel co.,ltd

Established as a galvanized steel sheet manufacturer in June 1948, Chiyoda Zinc Industry Co., Ltd., expanded the business to electric furnace steel making in November 1956 and to light bars in January 1957 and changed the company name to present Chiyoda-Steel Co., Ltd., in April 1974.


We have two production sites for steel bars for concrete reinforcement and prepainted steel sheets each. The abundant experience and advanced techniques ensure comparable power to enter the global competition in both quality and costs.

In particular, the reinforcing bar business site meets the strict environmental criteria of the Tokyo metropolitan government and the sole plant in Tokyo provides products in a timely manner.

We continue to contribute to the society by playing a role in the steel industry in Japan and strengthening the foundation of the company. We appreciate your support and patronage.



Chiyoda-Steel achieves worldwide sales of deformed steel bars.

The Kanto region in Japan is the largest supply base of scrap in southeastern Asia.

The products manufactured in the region that effectively utilize the competitive resources are not only used in Japan but also in a wide range of areas.

Company Overview

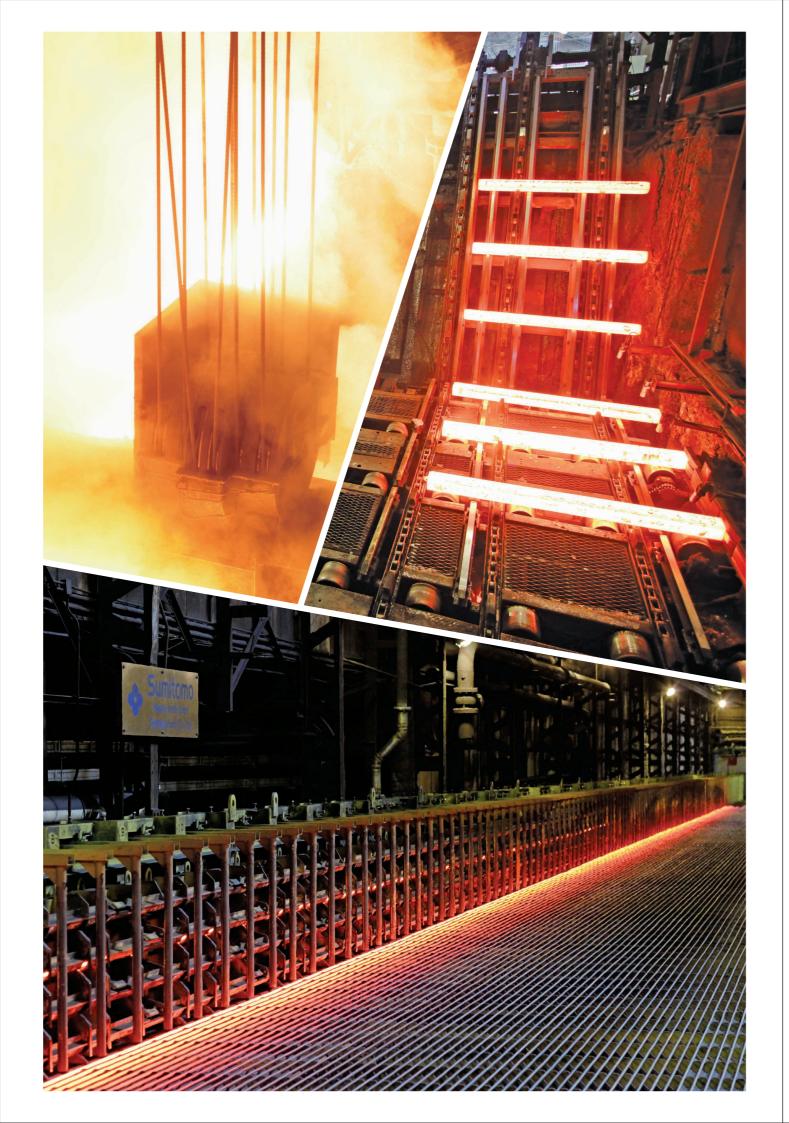
Headquarters Building

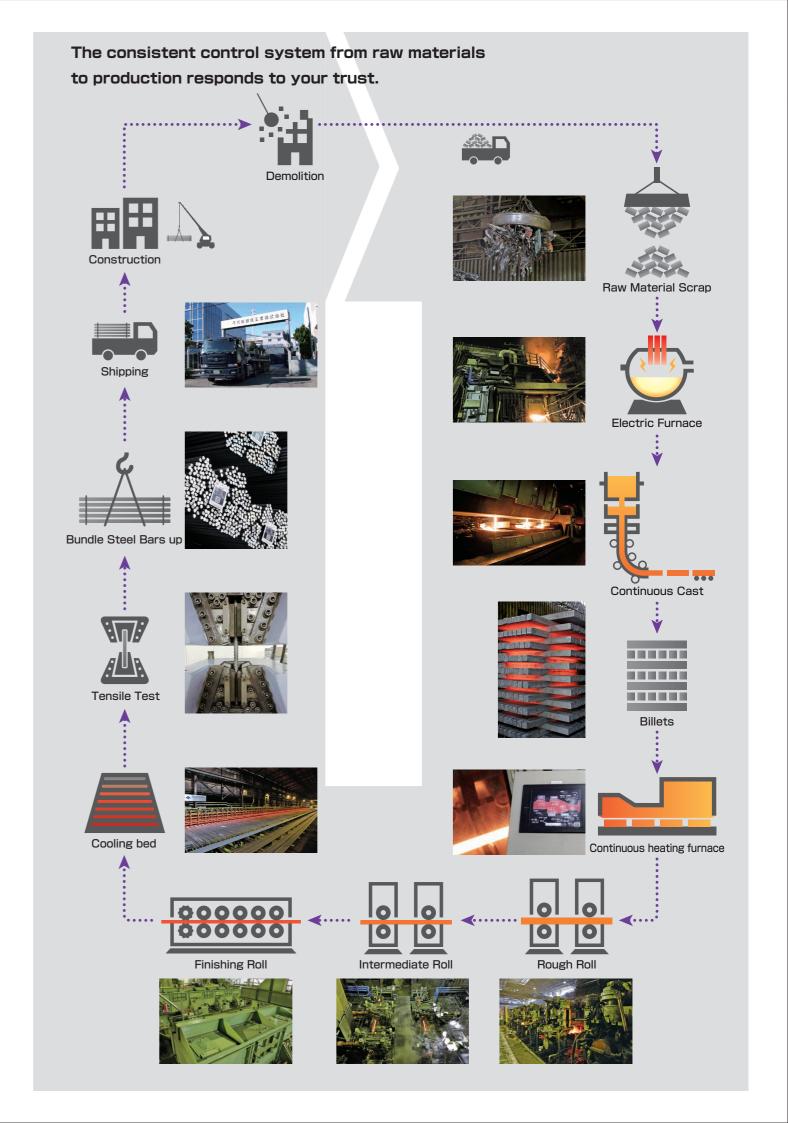
Corporate nameChiyoda-Steel Co., Ltd.PresidentMasataka SakataNumber of employees170

vase Plant

- Deformed steel bars for concrete reinforcement
- •JIS G3112 SD295A,SD345,SD390/D10,D13,D16/3.5~12.0m
- •ASTM A615 Grade40, Grade60/No.3, No.4, No.5/20, 30, 40ft
- •KS D3504 SD400/D10,D13,D16/8.0m •CSA G.30.18-09 Grade400W/10M/12.0m

Ichikawa Plant


<Business items>


Colored galvanized steel sheets (JIS G 3312, 3318, 3322) Formed and machined items

<Production capacity> 5,000 tons per month

History

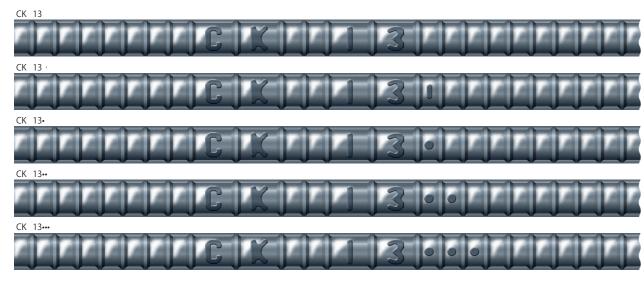
June	1948	Established Chiyoda Kogyosho at 791 Horikiri-cho, Katsushika-ku. Started manufacturing and sales of galvanized steel sheets.
June	1949	Formed a joint-stock company with capital of 400,000 yen. Changed the name to Chiyoda Zinc Industry Co., Ltd. Placed the headquarters at 1-4 Nihonbashi Edobashi, Chuo-ku.
October	1949	Moved the plant to the new location of the present headquarters in association with expanding demand for galvanized steel sheets. Monthly production of 1,500 tons.
January	1960	Added a 20-ton electric furnace plant. Monthly production of normal steel ingots of 4,500 tons for increased sales of steel ingots to the market.
August	1966	Approved plant for JIS marking of hot rolled steel bars types 1 and 2 and hot rolled deformed steel bars types 1 to 3 of steel bars for concrete reinforcement (JIS G 3112).
January	1971	Added a 40-ton electric furnace. Monthly production of normal steel ingots of 10,000 tons to intend increased sales of steel bars.
April	1974	Changed the company name to Chiyoda-Steel Co., Ltd., in association with the expansion of operations.
April	1975	Approved plant for JIS marking of hot rolled deformed steel bars type 4 for concrete reinforcement (JIS G 3112).
January	1990	Installed a flicker compensation system (15,000 kVA).
January	1990	Modified the heating furnace to the side-pusher type. Replaced the finishing line.
April	1992	Received the Director-General Prize of the Bureau of Economy, Trade and Industry as an excellent plant for energy management from the director-general of the Kanto Bureau of Economy, Trade and Industry.
November	1992	Received the Director-General Prize of the Kanto Bureau of Economy, Trade and Industry as an excellent plant for industrial standardization.
October	1996	Received the 3Rs Promotion Council Chair's Prize as acknowledgement for contributions to recycling promotion.
September	2002	Installed a building dust collector (6,000 Nm3).
February	2004	Shifted the heavy oil combustion equipment in the rolling mill to gas.
January	2006	Shifted the heavy oil combustion equipment in the steel mill to gas.
January	2007	Newly built the headquarters office.
February	2007	Obtained ISO 9001 certification from JIC Quality Assurance Ltd.
January	2008	Updated the finishing equipment of rolled materials.
May	2008	Added a dust collector for both furnace emissions and building equipment (7,000 m3/min).
June	2008	Obtained certification for the new JIS Marking system from JIC Quality Assurance Ltd.
January	2009	Updated the floor cooling system.
March	2009	Obtained certification under the KS standards.
December	2009	Registration of ISO 14001 by JIC Quality Assurance Ltd.

CK Brand, the pride of skillful Chiyoda. Deformed steel bars active in many fields.

Deformed bars - Product features

CK Brand to support social infrastructure

Chiyoda-Steel is proud of its CK Brand that has been a key part in the support of the essential social infrastructure for more fulfilled lives of people, including medium to high rises, residential buildings, and road improvement. Deformed steel bars play an important role as the fundamental material in civil engineering and construction projects in a wide range of fields.


Marking approval by Japanese Industrial Standards

Name	Category	Denotation of the type	Metal tag
		SD 295	White
Steel bars for concrete reinforcement	Deformed steel bar	SD 345	Yellow
(JIS G 3112)		SD 390	Green
		SD 490	Blue

JICQA	SD49		番号
溶番			
呼び名			
長さ			
数量	小京	東	*
⟨CK⟩	干代田鈿鉄	て学井ざ:	스타

Roll mark on a deformed steel bar

GRADE 40

	С	Si	Mn	Р	S	Yield Point	Tensile Strength	
	_			0.060% Max.	_	40000psi Min.	60000psi Min.	

GRADE 60

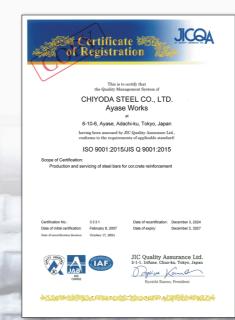
С	Si	Mn	Р	S	Yield Point	Tensile Strength
_	_	_	0.060% Max.	_	60000psi Min.	90000psi Min.

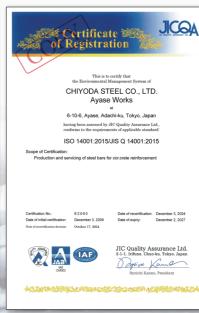
Tables of shape and mass

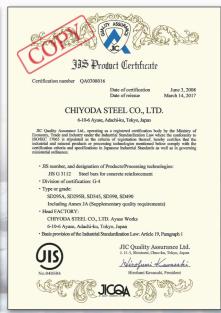
CK Brand to support social infrastructure

Chiyoda-Steel is proud of its CK Brand that has been a key part in the support of the essential social infrastructure for more fulfilled lives of people, including medium to high rises, residential buildings, and road improvement. Deformed steel bars play an important role as the fundamental material in civil engineering and construction projects in a wide range of fields.

Chemical composition


Name	Catagoni	Denotation of	ctation of Chemical composition %						
Ivallie	Category	the type	С	Si	Mn	Р	S	ceq	
Steel bars		SD 295	0.27 and less	0.55 and less	1.50 and less	0.050 and less	0.050 and less	_	
for concrete	Deformed steel bar	SD 345	0.27 and less	0.55 and less	1.60 and less	0.040 and less	0.040 and less	0.60 and less	
reinforcement		SD 390	0.29 and less	0.55 and less	1.80 and less	0.040 and less	0.040 and less	0.65 and less	
(JIS G 3112)		SD 490	0.32 and less	0.55 and less	1.80 and less	0.040 and less	0.040 and less	0.70 and less	


Dimension, mass, and rib tolerance for deformed steel bars


	Nominal	Nominal	Nominal cross-	Unit mass	Maximum of	Rib h	Maximum of sum	
Designation	diameter (d)	perimeter (I)	sectional area (S)	kg/m	averaged rib	Minimum	Maximum	of rib gaps
	mm	mm	mm²		interval mm	mm	mm	mm
D10	9.53	29.9	71.33	0.560	6.7	0.4	0.8	7.5
D13	12.7	39.9	126.7	0.995	8.9	0.5	1.0	10.0
D16	15.9	50.0	198.6	1.56	11.1	0.7	1.4	12.5

Mechanical properties

_												
		Category	Denotation of the type	Tensile test						Bend test		
Nan	Name			Yield point or 0.2 % proof stress N/mm ²	Tensile strength N/mm²	yield ratio (%)	Specimen	Elongation %	Bend angle	Inside radius		
		Deformed steel bar	SD 295	295 and more	440 to 600	_	According to No. 2	16 and more	180°	1.5 times nominal diameter		
	Steel bars for concrete			Deformed	Deformed SD 345	345 to 440	490 and more	80 and less	According to No. 2	18 and more	180°	1.5 times nominal diameter
	reinforcement (JIS G 3112)			SD 390	390 to 510	560 and more	80 and less	According to No. 2	16 and more	180°	2.5 times nominal diameter	
			SD 490	490 to 625	620 and more	80 and less	According to No. 2	12 and more	90°	2.0 times nominal diameter		

ISO 9001 Certificate of registration

ISO 14001 Certificate of registration

JIS Certifica